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INTRODUCTION

Prostate cancer remains the most common malignancy in American men and is the second leading cause of
cancer-related death (1). Advances in early detection have led to better surgical control of the disease, but less
progress has been made in the treatment of metastatic cancer. Androgen ablation remains the therapy of choice
for patients with metastatic prostate cancer, and almost all patients initially benefit from this approach.
However, almost all patients ultimately relapse with androgen-independent cancer, and the treatment options for
these patients are limited (2).

Investigation into the molecular mechanisms that mediate the effects of androgen ablation has established that
apoptosis plays a central role, and defects in the control of apoptosis in androgen-independent tumors not only
undermine androgen ablation therapy but also produce cross-resistance to other therapeutic modalities (3). Of
particular importance are members of the BCL-2 family of cell death regulators, which are known to play
evolutionarily conserved roles in the regulation of cell death in organisms ranging from the nematode
Caenorhabditis elegans to humans (4). The family is subdivided into 3 major categories based on their
functions in cell death regulation (4, 5). One subfamily (exemplified by BCL-2 itself and BCL-XL) consists of
cell death inhibitors and function to prevent the rate-limiting step in most examples of apoptosis (release of
cytochrome c from mitochondria). The second (exemplified by Bax and Bak) are highly homologous to BCL-2
but function to directly promote cytochrome c release, possibly by forming transmembrane pores in the outer
mitochondrial membrane. These proteins have been termed the "multidomain" proapoptotic BCL-2 family
members, and expression of at least one of them appears to be required for initiation of apoptotic cell death.
Finally, a third subfamily shares structural homology with the other two only within a circumscribed region (the
so-called "BH3" domain), and these proteins appear to function either as inhibitors of the anti-apoptotic
members of the family or as activators of Bax or Bak (6, 7). Overall, it appears that BH3 proteins function to
promote the tetramerization of Bax and/or Bak, which generates a pore that is large enough to accommodate
cytochrome c release (8). By virtue of their abilities to directly bind (and presumably neutralize) the BH3-only
and multidomain family members, the effects of BCL-2 and BCL-XL can be attributed to their functions as pore
inhibitors.

Although the pore formation model is relatively simple and probably accounts for an important aspect of BCL-2
family protein functions, strong evidence is now available that indicates that pore formation is not enough to
mediate cytochrome c release. Specifically, permeabilization of the outer mitochondrial membrane only
releases approximately 15% of the total pool of cytochrome c, whereas up to 90% of the pool is released in cells
dying by apoptosis (9, 10). Thus, cytochrome c release appears to commence via a two-step process. In the
first step, a tightly bound pool of cytochrome c is mobilized, and in the second Bax/Bak pores allow for this
mobilized cytochrome c to escape into the cytosol. It is possible that BH3-only proteins might use different
domains to accomplish both effects, as has been shown in the case of a truncated form of the BH3-only protein,
Bid (9). However, other work indicates that disruption of the electrostatic interactions between cytochrome c
and the charged mitochondrial membrane lipid, cardiolipin, can also lead to cytochrome c mobilization (11).

BCL-2 is overexpressed in androgen-independent prostate cancers (12, 13), whereas expression of Bax may be
reduced (13). Thus, understanding the molecular mechanisms underlying their effects on apoptosis should help
to identify new therapeutic strategies to overcome the cell death resistance observed in androgen-independent
disease. The overall goal of the research outlined in this project is to gain a better understanding of the effects
of BCL-2 and Bax in prostate cancer cells. Our hypothesis is that an important component of the effects of
these proteins is the regulation of intracellular calcium fluxes. More specifically, we suggest that proapoptotic
members of the BCL-2 family promote release of calcium from its natural intracellular storage site (the
endoplasmic reticulum), leading to increases in mitochondrial calcium that function to mobilize cytochrome c.
Our model is summarized in Figure 1.
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Figure 1: Two-step 0
model for Ca2+- BH3-only (Bim)
dependent cytochrome c -
release. Mitochondrial
Ca2+ uptake "loosens"
interactions between
cytochrome c and the Ca2+ Bax or Bak
inner mitochondrial k 0-0
membrane, allowing for
release via tetrameric
Bax and/or Bak channels
in the outer membrane.
The effects of Ca2+ may
be due to disruption of
interactions between
cytochrome c and Cytochrome c
cardiolipin or to more
global changes in
mitochondrial structure.

BODY

Observations leading to the present proposal:
In two previous studies we tested the hypothesis that Bax and Bak can target the ER to directly promote ER
calcium release (14, 15). In the first study we overexpressed Bax or Bak in PC-3 cells via adenoviral
transduction (14). (It should be noted that we did not directly manipulate BH3-only protein(s) in this study.)
These cells displayed accumulation of Bax and Bak in both the ER and mitochondria, and kinetic analyses
demonstrated that ER calcium levels were dramatically reduced roughly coincident with Bax or Bak protein
expression. Depletion of the ER calcium pool was associated with increased calcium uptake by mitochondria,
and selective or non-selective inhibitors of this uptake (BAPTA-AM or Ru-360) inhibited cytochrome c release
and downstream events associated with cell death (caspase activation and DNA fragmentation).

These results were consistent with the hypothesis outlined in the model in Figure 1 above. However, we were
concerned that the system was somewhat artificial, so we conducted a second study to examine whether or not
Bax/Bak-dependent ER calcium release contributed to cytochrome c release and apoptosis induced by
endogenous stimuli (15). We treated PC-3 cells with three different agents that are known to be potent inducers
of apoptotic cell death (staurosporine, doxorubicin, and Fas) and measured the ER calcium pool size at various
time points thereafter. Both staurosporine and doxorubicin caused a lowering of the ER calcium pool and
increased mitochondrial calcium uptake prior to measurable cytochrome c release, caspase activation, and DNA
fragmentation. Overexpression of BCL-2 blocked both ER calcium release and mitochondrial uptake, and the
mitochondrial calcium uptake inhibitor (Ru-360) also inhibited cytochrome c release and cell death.
Furthermore, studies in Bax-' cells demonstrated that both ER calcium release and mitochondrial uptake were
dependent on Bax.

Progress in the first year of funding:
Objective 1: Define the effects of mitochondrial calcium uptake on cytochrome c mobilization and release.
Tasks 1, 2: We have isolated mitochondria and membrane fractions from PC-3 cells using protocol-based and
commercial isolation methods. Immunoblotting for organelle-specific target proteins confirmed that both
methods work well, and low levels of exogenous calcium stimulate cytochrome c mobilization (measured by
digitonin permeabilization) without causing the release of mitochondrial marker proteins. However, the yield
obtained is poor and the approach will probably not be feasible for the planned 45Ca2+ uptake studies. We are
therefore submitting an IACUC animal protocol describing the isolation of mitochondrial and microsomal (ER)
fractions from mouse liver.

Task 3: We will wait to initiate the planned whole cell experiments until the organelle studies are complete.
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Objective 2: Determine the effects of BH3-only members of the BCL-2 family on intracellular calcium fluxes.
Task 1: We have defined the expression patterns of BH3-only proteins in LNCaP and PC-3 cells. In particular,
both cell lines express Bim and Bid, the two proteins that we consider to be of highest importance for the
proposed experiments.

Tasks 2-4: Two major issues arose over the past year that required us to address tasks outlined in Objectives 1-
3 simultaneously (rather than in sequence as presented in the Statement of Work). First, work from
Korsmeyer's laboratory and others argued that BCL-2 lowers the concentration of calcium in the ER lumen,
thereby limiting the amount of calcium that could be released during apoptosis to be taken up by mitochondria
(16). If reproduced, this observation would account for the effects of BCL-2 on ER calcium release and
mitochondrial calcium uptake we observed in the previous two studies, but it would also undermine the idea
that Bax and Bak target the ER to promote release during apoptosis. We therefore generated "stable"
transfectants of PC-3 expressing wild-type, organelle-targeted (17), and mutant (BH4 deletion (18)) forms of
BCL-2 to test their possible direct effects on the ER calcium pool and on cell death. The results demonstrated
that basal levels of ER calcium (measured by releasing it with the ER calcium ATPase inhibitors, thapsigargin
(19) and DBHQ (20)) were indistinguishable in cells transfected with vector or any of the BCL-2 constructs
tested (Figure 2). Vector control cells or cells expressing cytosolic, mitochondrial, or BH4 mutant forms of
BCL-2 challenged with either 1 [tM staurosporine for 8 h or 1 [tg/ml doxorubicin for 16 h displayed loss of ER
calcium, whereas cells expressing either wild-type or ER-directed forms of BCL-2 did not (Figure 2). These
agents also stimulated increases in mitochondrial calcium in the vector control cells or in cells transfected with
cytosolic, mitochondrial, or BH4 mutant forms of BCL-2, whereas these increases were not observed in cells
transfected with wild-type or ER-directed BCL-2 (Figure 3). Finally, staurosporine and doxorubicin induced
significant increases in DNA fragmentation in vector controls as well as in cells expressing cytosolic,
mitochondrial, or BH4 mutant forms of BCL-2, responses that were strongly inhibited by either wild-type or
ER-directed forms of BCL-2 (Figure 4). Together, these results demonstrate that BCL-2 functions at the ER
(not the mitochondria) to directly inhibit the ER calcium release and subsequent mitochondrial calcium uptake
caused by some pro-apoptotic stimuli. These experiments.

We then began studies aimed at determining the effects of proapoptotic stimuli on the localization of the BH3-
only protein, Bim, and the multi-domain Bax protein. Our reasons for focusing on Bim and Bax were based on
the observation that Bim (like Bid) is capable of directly activating Bax (6, 7), and Bax-null cells displayed
defects in ER calcium mobilization in our previous studies (15). In preliminary experiments we confirmed that
PC-3 cells express Bim. We also obtained GFP-conjugated forms of wild-type and mutant Bax (C-terminal
domain mutants) from Dr. Richard Youle (NIH) and confirmed that we could accurately measure their
subcellular localization in single cells by confocal microscopy. It was in the course of conducting these
experiments that we encountered an unexpected problem. As a control, we stained our transfectants with an
anti-BCL-2 antibody to confirm that the targeted mutants localized correctly in intact cells. (We had already
confirmed that they localized correctly using organelle fractionation.) BCL-2 levels were quantified at the
single cell level by flow cytometry or by laser scanning cytometry (LSC). Surprisingly, PC-3 cells transfected
with mitochondrial BCL-2 lost the protein with rapid kinetics, and essentially all of the transfected protein was
gone by 21 days after expansion of stable clones (Figure 5). Wild-type and ER-targeted forms of BCL-2 were
retained longer but were still lost with a tl/2 of approximately 14 days (Figure 5). Expression of the cytosolic
form of BCL-2 was more stable (Figure 5), but the protein moved from the cytosol to the nucleus after about 21
days (data not shown). Transient transfection of either the mitochondrial or BH4 mutant forms directly
stimulated cell death, but the wild-type and ER-targeted forms did not (data not shown). These findings make
us concerned that overexpression studies like the ones proposed in our Statement of Work, Objective 2, Tasks 3
and 4, may not provide as much insight into the functions of the various BCL-2 family proteins as targeted
knockdown experiments would. The loss of wild-type BCL-2 displayed by the PC-3 cells is also worrisome
given that the protein is thought to play a positive role in prostate cancer progression and androgen-independent
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growth. Similar effects have not been reported in LNCaP cells transfected with BCL-2, and orthotopically
selected metastatic variants of LNCaP display stable overexpression of the protein relative to parental LNCaP
cells or non-metastatic variants.

To overcome these problems we have implemented two complementary strategies. First, we have generated
stable transfectants of LNCaP-Pro5 cells expressing wild-type or mutant forms of BCL-2 under the control of
an autologous (CMV-driven) promoter and an inducible (ecdysone-driven) promoter. LNCaP-Pro5 cells are
more difficult to load with our calcium-sensitive fluorescent indicators, but LNCaP cells are generally
considered a more appropriate model of human prostate cancer than are PC-3 cells. Second, we are optimizing
our techniques for knocking down expression of target genes by siRNA in these cells. We have successfully
knocked down two control proteins (p21WAF-I/CiP-' and p 2 7KiP-), and these data were used in two manuscripts that
have been submitted for publication (see Appendix). It is our plan to make the gene silencing experiments
described under Objective 2, Task 5 the top priority in the coming 6 months. Specifically, we will directly
test whether or not Bim-mediated Bax activation controls ER calcium release in LNCaP-Pro5 cells and
determine how BCL-2 affects these processes.
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Objective 3: Identify the effects of Bax and Bak on ER calcium fluxes.
Task 1: We are optimizing our organelle preparations as described under Objective 1 above. We have also
discussed collaborating with Dr. Richard Youle at NIH to obtain recombinant Bax and Bak. (He has generated
both proteins and is willing to work with us on this project.)

Tasks 2 and 3: As discussed above, we are concerned that the strategies we have used to overexpress targeted
forms of BCL-2 to the ER or mitochondria have perturbed cell function(s) in inappropriate ways. Thus, we do
not plan to begin generating targeted forms of Bax and Bak until we have confirmed that one or both proteins
normally localize to the ER in whole cells.

KEY RESEARCH ACCOMPLISHMENTS
"• Obtained very strong evidence for the idea that BCL-2 must be localized to the ER to prevent apoptosis-

associated calcium fluxes in PC-3 cells.
"• Demonstrated that BCL-2 does not reduce ER luminal calcium levels in these cells
"• Showed that, contrary to our expectations, mitochondrial BCL-2 does not protect cells from death
"• Showed that exogenous calcium can promote mobilization of cytochrome c from tightly bound

mitochondrial pools, consistent with the model presented in Figure 1
"• Have established the appropriate conditions for successful gene silencing in LNCaP-Pro5 cells and used

these methods to complete two other prostate cancer research papers (Appendix)

REPORTABLE OUTCOMES
1. Generated transfectants of PC-3 and LNCaP-Pro5 expressing various forms of BCL-2.
2. Used siRNA methods developed within the context of this grant to address reviewers' comments on

a manuscript, "Bortezomib abolishes TRAIL resistance via a p21-dependent mechanism in human
bladder and prostate cancer cells," L. Lashinger, K. Zhu, et al., Cancer Research (Advances in
Brief). (Keyi Zhu's graduate stipend is directly supported by this grant.)

3. Used siRNA methods to complete a second manuscript, "The proteasome inhibitor bortezomib
interferes with docetaxel-induced apoptosis in human LNCaP-Pro5 prostate cancer cells," S.
Canfield et al, Clinical Cancer Research. (Revisions pending.)

CONCLUSIONS
1. The suppression of ER calcium release observed in prostate cancer cells that overexpress BCL-2 is

not caused by a lowering of luminal calcium levels.
2. The pool of BCL-2 that is localized to the ER plays an important role in controlling ER calcium

efflux during apoptosis.
3. Overexpression of BCL-2 targeted to mitochondria is not tolerated.
4. Overexpression of a BH4 mutant form of BCL-2 appears to promote ER calcium efflux.
5. Calcium can promote cytochrome c mobilization in isolated mitochondria.
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Abstract

Bortezomib (PS-341, Velcade) is a peptide boronate inhibitor of the 20S proteasome that

is currently being combined with taxanes in several clinical trials. Here we demonstrate

that exposure of human LNCaP-Pro5 prostate cancer cells to bortezomib plus docetaxel

(Taxotere) resulted in less apoptosis than was observed in cells exposed to docetaxel

alone. The effects of bortezomib were associated with accumulation of p21 and

abrogation of docetaxel-induced M-phase arrest and were mimicked by chemical cyclin-

dependent kinase (cdk) inhibitors. Transient transfection of LNCaP-Pro5 cells with p21

also inhibited docetaxel-induced apoptosis, and elimination of p21 expression via siRNA

eliminated the bortezomib-induced inhibition of docetaxel-induced apoptosis. Together,

our results demonstrate that bortezomib interferes with docetaxel-induced apoptosis via a

p21-dependent mechanism. These observations may have important implications for the

ongoing bortezomib-docetaxel combination trials as well as trials employing bortezomib

and other cell cycle-sensitive agents.

(139 words)
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Introduction

In 2004, prostate cancer is the most common cancer in men, with an estimated

incidence of over 230,000 new cases, and the second most lethal cancer in men, with

almost 30,000 new deaths.(l) Advanced disease has a 5-year survival of only 30%.(2)

Historically, chemotherapy has been utilized with palliative intent but unclear survival

benefit for these advanced stage patients. Current practices for hormone-refractory,

metastatic prostate cancer incorporate the use of taxanes. Docetaxel in particular is being

incorporated in numerous current clinical trials either as a single or combination agent

against androgen independent prostate cancer, and it is also being investigated for its use

as a neoadjuvant or adjuvant agent in hormone sensitive, locally aggressive prostate

cancer.(5, 6) Combination regimens involving docetaxel and well-established agents

such as estramustine and prednisone are being evaluated, but it appears that these

strategies are not yielding a qualitative increase in anti-tumor activity. Thus, the

development of novel combination approaches involving docetaxel and biological

targeting agents is being pursued aggressively.

The activity of the 26S proteasome is required for cell cycle progression and cell

survival, making it an attractive therapeutic target in cancer. Bortezomib (also know as

PS-341 or Velcade) is a dipeptidyl boronic acid inhibitor of the chymotryptic activity of

the proteasome that is currently the only proteasome inhibitor in clinical use. In

preclinical studies the drug displayed promising activity in the National Cancer Institute's

(NCI) 60 cancer cell line panel, with a mean IC 50 of 7nM and a unique cytotoxic profile

compared to historical results of 60,000 other compounds.(l0) The drug has especially

impressive activity in multiple myeloma and recently received FDA approval for the
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treatment of this disease,( 11, 12) Bortezomib also exhibited activity in preclinical models

of human solid tumors, especially when combined with standard chemotherapeutic

agents, including docetaxel .(14, 15) Bortezomib has been utilized in 60 clinical trials,

most currently ongoing. It is being combined with docetaxel in 5 of these trials,

including one for prostate cancer. Knowledge about the interactions of these two agents

has current relevance for clinical application.

Here we characterized the effects of bortezomib on docetaxel-induced apoptosis

in androgen-sensitive LNCaP-Pro5 cells. The results demonstrate that bortezomib

prevents docetaxel-induced accumulation of cells in M phase and subsequent apoptosis

via a p21-dependent mechanism. Our findings represent a cautionary note for the

development of other combinations of bortezomib with cell cycle-sensitive therapeutic

approaches.

MateriaLs and Methods

Animals, Cell Lines and Antibodies

Male nude mice (BALB/c) were purchased from the Animal Production Area of the

National Cancer Institute Frederick Cancer Research and Development Center

(Frederick, MD). LNCaP Pro5 human prostate cancer cells were derived from orthotopic

recycling of the parental line.(16) Briefly, the parental cell line (LNCaP, American Type

Culture Collection, Rockville, MD) was orthotopically injected into the prostates of nude

mice, and the resultant prostate tumors were harvested, mechanically dissociated and

regrown in culture. These cells were then reimplanted into the prostates of nude mice,
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and the recycling process was continued for a total of 5-cycles to produce the more

locally aggressive variant LNCaP-Pro5. Cells were maintained in RPMI supplemented

with 10% fetal bovine serum (FBS) along with sodium pyruvate, nonessential amino

acids, L-glutamine, vitamins and antibiotics under conditions of 5% CO 2 in air at 37°C.

Antibodies were obtained from the following commercial sources: anti-p21 and p27

(Transduction Laboratories, San Diego, CA), anti-actin (Sigma Chemical Co., St. Louis,

MO)

MTT Assays

Cells were cultured in 96-well plates (10,000 cells/well) and rested for 48 hours.

Following incubation with escalating doses of bortezomib alone (1.25 - 20nM) or

combined with docetaxel lOng/mL, or escalating doses of docetaxel alone (1.25 -

20ng/mL) or combined with bortezomib 1OnM, for 48 hours, cells were incubated with

MTT (3-[4,5-dimethylthiazol-2-y])-2,5-diphenyltetrazolium bromide (Sigma Chemical

Co., St. Louis, MO) in PBS at 5mg/mL, (lOuL/well) for 2 hours at 37°C. The medium

was replaced with DMSO (40uL/well) and MTT precipitates were dissolved for 1 hour

before quantification of optical densities (570nm).

Quantification of DNA Fragmentation

DNA fragmentation was measured by propidium iodide (PI) staining and fluorescence-

acivated cell sorting (FACS) analysis. Cells were plated in six-well plates (1 x 104

cells/well). Following incubation with 1 - 100 nM bortezomib, 1 - 100 ng/mL docetaxel,
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25uM roscovitine, 1 OOuM olomucine or combinations, either alone or in combination

with p21 or p27 amplification or silencing transfections in vitro, cells were harvested,

pelleted by centrifugation, and resuspended in PBS containing 50ug/mL PI, 0.1% Triton

X- 100, and 0.1% sodium citrate. Cells were incubated with the PI solution for at least 1

hour at 4'C, and flow cytometric analysis was performed with a FACScan (Beckman-

Coulter, ...).

Immunoblotting

Cells (1 x 105) were incubated with 1OOnM bortezomib, 1OOng/mL docetaxel or the

combination, either alone or after exposure to transfections with control vector, p21

cDNA, nonspecific siRNA, p21 siRNA or p27 siRNA. Cells were lysed with 1% Triton

X- 100 buffer in situ for 10 minutes, then transferred after scraping to eppindorf tubes

where lysis continued for 1 hour at 4'C. Lysates were centrifuged at high speed to

exclude the cellular pellet, and protein concentration was determined with Bradford

odensitometry. Approximately 20ug from each sample were subjected to SDS-PAGE,

proteins were transferred to nitrocellulose membranes, and the membranes were blocked

with 5% nonfat milk in a Tris-buffered saline solution containing 0.1% Tween 20 for 2

hours at 4VC. Blots were then probed overnight with the relevant antibodies, washed, and

probed with species-specific secondary antibodies coupled to horseradish peroxidase.

Immunoreactive material was was detected by chemiluminescence (Amersham...).

Immunofluorescence and DNA Fragmentation
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p21 expressing cells were identified by FITC labeling and FACS analysis, which was

combined with PI staining for quantification of DNA fragmentation. Cells were plated in

six-well plates (1 x 104 cells/well). Following incubation with 100 nM bortezomib, 100

ng/mL docetaxel, or combinations, either alone or in combination with p21 or p27

amplification or silencing transfections in vitro, cells were harvested, pelleted by

centrifugation, washed in phosphate buffered saline (PBS), and resuspended in 1%

paraformaldehyde for 10 minutes at room temperature. Cells were then washed in PBS,

centrifuged, and resuspended in intracellular staining buffer (ISB) with 0.1% Tritin X-

100 and relevant primary antibody (e.g., monoclonal anti-p21 antibody at 1:100 dilution)

for 1 hour at 4°C. Cells were then washed in ISB, centrifuged, and resuspended in ISB

with species-specific secondary FITC (e.g., rabbit anti-mouse at 1:50 dilution) for 30

minutes at 40C under light protection. Cells were then washed with ISB, centrifuged, and

resuspended in PI solution as mentioned above, overnight at 4°C under light protection.

Cytometric analysis was performed as mentioned above, quantifying DNA fragmentation

for populations of all, p21 expressing and p21 nonexpressing cells as separated by FITC

label.

Results

Effects of bortezomib and docetaxel on cell proliferation and apoptosis . We

compared the concentration-dependent effects of bortezomib, docetaxel, or both agents

on the proliferation of LNCaP-Pro5 cells using MTT assays. Consistent with previous

work (1 0),(17), bortezomib inhibited cell proliferation at low nanomolar concentrations
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(IC90 = 1OnM) (Fig. 1A). Docetaxel also inhibited cell proliferation in a concentration-

dependent fashion (IC 90 = 1 Ong/mL) (Fig. 1 B). When cells were treated first with a fixed

concentration of docetaxel (1 Ong/mL) followed by increasing concentrations of

bortezomib (1.25 - 20 nM), no significant change in growth suppression was seen

compared to that observed with docetaxel alone. (Fig. 1A) Likewise, when cells were

treated first with a fixed concentration of bortezomib (1 OnM) followed by increasing

concentrations of docetaxel, the level of growth suppression was similar to that observed

in response to treatment with bortezomib alone. (Fig 11B)

We next measured the effects of the bortezomib plus docetaxel on DNA

fragmentation typical of apoptosis by propidium iodide staining and FACS analysis.

Cells treated with either bortezomib (10 nM) or docetaxel (10 ng/mL) displayed

significant DNA fragmentation 48 h after drug exposure (45 and 68%, respectively)(Fig.

1 C,D) However, when cells were first treated with docetaxel (1 Ong/mL) followed by

increasing concentrations of bortezomib (1 - 1 OnM), a significant reduction in docetaxel-

induced apoptosis occurred as the concentration of bortezomib dose increased (50%

reduction) (Fig. 1 C). Likewise, when cells were first treated with bortezomib (1 OnM)

followed by increasing concentrations of docetaxel (1 - 1Ong/mL), the levels of DNA

fragmentation observed were identical to levels achieved in cells treated with bortezomib

alone, representing a 50% reduction in the docetaxel response (Fig. 1D)

Chemical cdk inhibitors mimic the effects of bortezomib. Docetaxel-induced

apoptosis occurs during the M phase of the cell cycle.(1 8) The PI/FACS results obtained

above demonstrated that bortezomib completely blocked docetaxel-induced accumulation

of cells in M phase (data not shown). In a previous study we showed that bortezomib
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inhibits basal and docetaxel-induced cdk2 and cdc2 activation (Nawrocki), so we

examined whether or not chemical cdk inhibitors might also prevent M phase

accumulation and apoptosis. Consistent with our prediction, roscovitine (25 [tM)(Fig.

2A) and olomoucine (100lM) (Fig. 2B) both inhibited docetaxel -induced M-phase

accumulation (data not shown) and apoptosis. These data indicate that bortezomib's

ability to block cdk activation is sufficient to explain its antagonism of docetaxel-induced

M phase arrest and apoptosis in LNCaP-Pro5 cells.

Role of p21. In a previous study we showed that bortezomib promotes the

accumulation of p53 and p21 in LNCaP-Pro5 cells (refs). It therefore seemed reasonable

that p21 might contribute to the bortezomib-induced inhibition of M phase accumulation

in docetaxel-treated cells. In a first series of experiments we exposed LNCaP-Pro5 cells

to bortezomib, docetaxel, or a combination of both agents for 24 h and measured p21

expression by immunoblotting. Consistent with our expectations, p21 levels were

markedly elevated in cells exposed to bortezomib or bortezomib plus docetaxel (Fig. 2A).

At the 24 h time point the bortezomib-mediated antagonism of docetaxel-induced

apoptosis was even more obvious than it was at 48 h (Fig. 2B), presumably because

docetaxel-induced apoptosis occurred with more rapid kinetics than bortezomib-induced

apoptosis.

To more directly implicate p21 in the process, we transiently transfected LNCaP-

Pro5 cells with a p21 expression vector to mimic the expression seen after exposure to

bortezomib. Parallel control experiments demonstrated that transfection efficiency was

approximately 20% (data not shown). Cells tranfected with p21 displayed significantly

lower levels of apoptosis than were observed in cells transfected with empty vector (Fig.
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4A) Parallel immunoblotting studies confirmed that the transfected cells expressed

higher levels of p21 protein (Fig. 4B).

In order to further explore the role of p21 in the effects of bortezomib, we used

two-color FACS to compare the levels of apoptosis observed in p21-positive and p21 -

negative subsets of LNCaP-Pro5 cells (Fig. 6A). Consistent with the immunoblotting

results, untreated cells or cells treated with docetaxel alone (100ng/mL) for 24 hours did

not express significant levels of p21, while 70% of cells treated with bortezomib (1OOnM)

or bortezomib + docetaxel for 24 hours expressed elevated p21 levels (Fig. 5). By gating

on these subsets we determined the percentages of apoptotic p21-positive and p21 -

negative cells by PI/FACS. The control cells and those exposed to docetaxel displayed

identical levels of DNA fragmentation in the ungated population and the p21-negative

subset because the percentage of p21-positive cells within the bulk population was so low

(Fig. 6B). However, in cells treated with either bortezomib alone or bortezomib plus

docetaxel, very little apoptosis was detected in the p21-positive subset, whereas levels of

apoptosis were high in the 30% of cells that did not express p21 (Fig. 6B). Therefore,

expression of p21 correlated directly with resistance to apoptosis in cells treated with

either bortezomib alone or bortezomib plus docetaxel.

Requirement for p21 in bortezomib-mediated inhibition of docetaxel-induced

apoptosis. The results presented above strongly suggested that p21-mediated inhibition

of cdk activation accounted for the inhibition of M phase arrest and apoptosis observed in

LNCaP-Pro5 cells treated with docetaxel plus bortezomib. To directly test this

possibility, we examined the effects of silencing p21 expression on apoptosis in cells

treated with bortezomib plus docetaxel. In control cells, significant inhibition of
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docetaxel-induced apoptosis was seen when bortezomib (IOOnM) was combined with

docetaxel (lOOng/mL) after 24 hours. (Fig. 7A) However, in p21 silenced cells, the

bortezomib-mediated antagonism was reversed and the levels of apoptosis were

equivalent to those observed in cells treated with docetaxel alone. (Fig. 7A)

Immunoblotting confirmed that the siRNA construct eliminated p21 expression under all

conditions (Fig. 7B). These results directly confirm that bortezomib-induced

accumulation of p21 mediates its antagonistic effects on docetaxel-induced apoptosis.

Discussion

Given the challenge of advanced prostate cancer therapy, novel agents with

promising activity are quickly incorporated into trials which often include conventional

agents as well. Bortezomib, a potent inhibitor of the 26S proteasome, has shown

significant activity against both androgen-sensitive and androgen-independent prostate

cancer in preclinical models.(10, 22) A recently completed Phase I clinical trial of

bortezomib in patients with advanced prostate cancer demonstrated its potential for this

disease.(23) Paclitaxel has a well established role in advanced prostate cancer,(24-26)

and docetaxel is currently under investigation as an equivalent or superior substitute.(24,

27-29) Results of Phase II clinical trials of docetaxel based combination regimens have

shown clear palliative responses, decreases in PSA levels by at least 50% in at least 60%

of patients, and suggestions of improved survival.(27) Docetaxel also holds promise in

the early stages of prostate cancer progression, and is currently under investigation for its

role as a neoadjuvant or adjuvant agent in aggressive, androgen-sensitive prostate
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cancer.(5, 6, 30-32) Furthermore, docetaxel based regimens are actively being developed

to incorporate novel investigational agents, such as a current clinical trial with

bortezomib in advanced prostate cancer. Docetaxel effects many cellular pathways and is

therefore thought to have excellent potential for synergy with novel anti-cancer

agents.(33) Promising targets have included the EGF receptor(34), HER-2 (35-38), the

farnesyl transferase pathway(39), and Bcl-2.(40, 41) The proteasome is a target under

current investigation in 5 clinical trials with combination docetaxel, but is as yet of

unproven benefit.

The results of this study demonstrate that bortezomib's activity as a strong cell

cycle inhibitor produce antagonistic effects on apoptosis when it is combined with

taxanes. The effects of bortezomib were mediated by its ability to promote accumulation

of the cdk inhibitor, p21, and studies with chemical cdk inhibitors (roscovitine,

olomoucine) strongly suggest that the mechanism also involved p21-mediated cdk

inhibition. Previous studies have demonstrated that taxanes initiate apoptosis in cells that

are initially arrested at M phase (refs) and that taxane-induced apoptosis requires cdc2

activation (refs). Our observations are entirely consistent with these results. Although

the drug has clear antagonistic effects on docetaxel-induced apoptosis in this model and

others (Nawrocki), some studies have reported that bortezomib sensitizes other cells to

taxane-induced apoptosis (Chiao), so it is possible that a characterization of the molecular

mechanisms involved in the different responses will allow for the identification of

patients who would benefit from combination therapy. Furthermore, bortezomib's ability

to arrest cells at G1/S and G2 may be an effect that can be exploited with other pro-

apoptotic stimuli, particularly TRAIL (refs).
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Although bortezomib clearly inhibited docetaxel-induced apoptosis in the

LNCaP-Pro5 cells, the levels of apoptosis observed in cells treated with bortezomib alone

were identical to those observed in cells treated with bortezomib plus increasing

concentrations of docetaxel, demonstrating that docetaxel did not interfere with

bortezomib-induced apoptosis. Given that bortezomib arrests cells at earlier point(s) in

the cell cycle, this result is not surprising, and it strongly suggests that antagonism will

only be observed in tumor cells that are more sensitive to apoptosis induced by taxanes

versus bortezomib. Although the molecular mechanisms underlying bortezomib-induced

apoptosis remain unclear, candidates include inhibition of NFkB (refs), p53 activation

(Williams), production of reactive oxygen species (refs), and the accumulation of

misfolded and/or damaged proteins resulting in a phenomenon termed "ER stress" (refs).

It is interesting to note that levels of bortezomib-induced apoptosis were significantly

higher in the 30% of cells that were p21-negative in bulk populations (Fig. 6) and that

they were also higher following p21 silencing (Fig. 7). Thus, it does not appear that p21

is required for bortezomib-induced apoptosis, and in fact strategies to inhibit p21

expression in tumors will probably enhance the drug's activity.

It is also important to point out that tumor cell apoptosis is only one of the

mechanisms underlying tumor growth inhibition in vivo. For example, in our own

previous work we demonstrated that treatment of human L3.6pl pancreatic cancer cells

with bortezomib plus docetaxel resulted lower levels of clonogenic survival (measured at

14 days) as compared to those observed in cells treated with either bortezomib or

docetaxel alone. Treatment with the combination also resulted in stronger inhibition of

tumor growth than did therapy with either single agent in orthotopic L3.6pl tumor
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xenografts, effects that were linked to strong inhibition of tumor cell proliferation and

angiogenesis (Nawrocki). Thus, the fact that bortezomib and taxanes inhibit cell cycle

progression at different points and inhibit angiogenesis via different molecular

mechanisms probably explains why combination therapy is more potent when the assays

of drug activity are highly sensitive to changes in tumor cell proliferation. However, if

the goal of therapy is to regress established bulky disease, then caution should be

exercised before proceeding with this or other combinations of bortezomib and cell cycle-

sensitive agents. While inhibition of proliferation and/or angiogenesis is expected to

produce disease stabilization, it does not appear that these effects are generally sufficient

to produce regressions. Conversely, levels of therapy-induced apoptosis do appear to

predict response in tumors treated with cytotoxic agents (Davis). It is possible that

bortezomib's antagonism of docetaxel-induced apoptosis can be overcome, for example

by silencing p21 expression. Alternatively, it may be better to optimize scheduling or

identify combination regimens that better exploit bortezomib's complex effects on the

cell cycle.
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Figure Legends

Figure 1. Effects of bortezomib and docetaxel on proliferation and apoptosis in the

human prostate cancer cell line LNCaP-Pro5 in vitro, as measured by MTT assay and

DNA fragmentation. A, effects of increasing dose bortezomib and steady dose docetaxel

on proliferation. Cells were incubated with escalating doses of bortezomib alone or after

exposure to docetaxel (10ng/mL) for 48 hours and analyzed by MTT analysis as

described in Materials and Methods. Mean values presented are from eight replicate

samples. Results of one experiment representative of three independent replicates. B,

effects of increasing dose docetaxel and steady dose bortezomib on proliferation. Cells

were incubated with escalating doses of docetaxel alone or after exposure to bortezomib

(lOnM) for 48 hours and analyzed by MTT analysis as described in Materials and

Methods. Mean values presented are from eight replicate samples. Results of one

experiment representative of three independent replicates. C, effects of increasing dose

bortezomib and steady dose docetaxel on DNA fragmentation. Cells were incubated with

escalating doses of bortezomib alone or after exposure to docetaxel (1 Ong/mL) for 48

hours and analyzed by propidium iodide staining and FACS analysis as described in

Materials and Methods. Columns, mean (n=3); bars, SD. *, significantly different from

control within the same treatment arm. D, effects of increasing dose docetaxel and steady

dose bortezomib on DNA fragmentation. Cells were incubated with escalating doses of

docetaxel alone or after exposure to bortezomib (1 OnM) for 48 hours and analyzed by

propidium iodide staining and FACS analysis as described in Materials and Methods.

Columns, mean (n=3); bars, SD. *, significantly different from control. **, significant
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difference between docetaxel and bortezomib + docetaxel treatments. E, summary of

effects of bortezomib and docetaxel on apoptosis. Cells were incubated with 10 nM

bortezomib, 10 ng/mL docetaxel or bortezomib + docetaxel for 48 h. DNA

fragmentation was measured by PI staining and FACS analysis as described in Materials

and Methods. Columns, mean (n=3); bars, SD. *c, significantly different from control.

**, significant difference between docetaxel and bortezomib + docetaxel treatments.

Figure 2. Effects of docetaxel and known cell-cycle inhibitors on apoptosis as measured

by DNA fragmentation in vitro. A, effects with roscovitine. Cells were incubated with

10 ng/mL docetaxel, 25 uM roscovitine or docetaxel + roscovitine for 48 h. DNA

fragmentation was measured by PI staining and FACS analysis as described in Materials

and Methods. B, effects with olomucine. Cells were incubated with 10 ng/mL docetaxel,

100 uM olomucine or docetaxel + olomucine for 48 h. DNA fragmentation was

measured by PI staining and FACS analysis as described in Materials and Methods.

Columns, mean (n=3); bars, SD. *, significantly different from control. **, significant

difference between docetaxel and docetaxel + olomucine treatment.

Figure 3. Effects of bortezomib and docetaxel on p21 expression in the human prostate

cancer cell line LNCaP-Pro5 in vitro as measured by immunoblotting. A, effects of

bortezomib, docetaxel and the combination on apoptosis after 24 hours. Cells were

incubated with 100 nM bortezomib, 100 ng/mL docetaxel or bortezomib + docetaxel for

24 h. DNA fragmentation was measured by PI staining and FACS analysis as described

in Materials and Methods. Columns, mean (n=3); bars, SD. *, significantly different
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from control. **, significant difference between docetaxel and bortezomib + docetaxel

treatments. B, effects of bortezomib, docetaxel and the combination on p21 expression.

Cells were incubated with 100 nM bortezomib, 100 ng/mL docetaxel or bortezomib +

docetaxel for 24 h. Cells were harvested and lysed, and levels of p21 and actin were

measured by immunoblotting. Results are representative of three independent replicates.

Figure 4. Effects of docetaxel and p21 transfection on apoptosis in the human pmstate

cancer cell line LNCaP Pro5 in vitro. A, effects of p21 transfection on apoptosis. Cells

were transiently transfected with empty vector (control) or p21 cDNA for 48 h. as

described in Materials and Methods. Cells were then incubated with the indicated

concentrations of docetaxel for 48 h. DNA fragmentation was measured by PI staining

and FACS analysis as described in Materials and Methods. Columns, mean (n=3); bars,

SD. *, significantly different from control. **, significant difference between empty

vector and p21 transfection treatments. B, confirmation of p21 transfection. Cells were

transiently transfected with empty vector (control) or p21 cDNA for 48 h. as described in

Materials and Methods. After another 48 h., cells were harvested and lysed, and levels of

p21 were measured with immunoblotting. Results are representative of three independent

replicates.

Figure 5. Effects of bortezomib and docetaxel on p21 expression in the human prostate

cancer cell line LNCaP-Pro5 in vitro as measured by immunofluorescence. Cells were

incubated with 100 nM bortezomib, 100 ng/mL docetaxel or bortezomib + docetaxel for

24 h. Levels of p21 were measured by immunofluorescence with FITC relative to
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backround IgG levels and FACS analysis as described in Materials and Methods. Results

are representative of three independent replicates. Gates, mean (n=3). *, significantly

different from IgG control.

Figure 6. Effects of bortezomib and docetaxel within populations of p21 expressing

(positive) and non-expressing (negative) cells on inducing apoptosis in the human

prostate cancer cell line LNCaP-Pro5 in vitro, as measured by immunofluorescence and

DNA fragmentation. A, DNA fragmentation peaks. Cells were incubated with 100 nM

bortezomib, 100 ng/mL docetaxel or bortezomib + docetaxel for 24 h. Cells expressing

p21 were identified by p21 -FITC immunofluorescence as described in Materials and

Methods. DNA fragmentation was measured by PI staining and FACS analysis for the

total cell populations, the p21 positive cell populations and the p21 negative cell

populations as described in Materials and Methods. Top row demonstrates cell sorting

into populations of p21 positive cells (above gate) and p21 negative cells (below gate).

Bottom three rows demonstrate DNA fragmentation peaks for each condition within the

total, p21 positive, and p21 negative cell populations. B, summary of sub GO/G1

(apoptotic) peak data for the total, p21 positive and p21 negative cell populations.

Columns, mean (n=3); bars, SD. *, significantly different from control. **, significant

difference between docetaxel and bortezomib + docetaxel treatments. Note, the

significant inhibition of apoptosis from combination therapy seen in the total cell

population is absent in the p21 negative population.
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Figure 7. Effects of silencing p21 and p27 on bortezomib inhibition of docetaxel-

inducing apoptosis in the human prostate cancer cell line LNCaP-Pro5 in vitro. A, effects

of silencing RNA. Cells were transfected with nonspecific (control), p21 or p27

silencing RNA for 48 hours as described in Materials and Methods. Cells were then

incubated with 100 nM bortezomib, 100 ng/mL docetaxel or bortezomib + docetaxel for

24 hours. DNA fragmentation was measured by PI staining and FACS analysis as

described in Materials and Methods. Columns, mean (n=3); bars, SD. *, significantly

different from control. **, significant difference between docetaxel and bortezomib +

docetaxel treatments. B, confirmation and effects of silencing RNA. Cells were

transfected with nonspecific (control), p21 or p27 silencing RNA for 48 hours as

described in Materials and Methods. After an additional 24 hours, cells were harvested

and lysed, and levels of p21, p27 and actin were measured by immunoblotting. Results

are representative of three independent replicates.
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ABSTRACT

TRAIL is a member of the TNF family of cytokines that induces apoptosis in some tumor

cells but not in normal cells. Unfortunately, many human cancer cell lines are refractory

to TRAIL-induced cell death, and the molecular mechanisms underlying resistance are

unclear. Here we report that TRAIL resistance was reversed in human bladder and

prostate cancer cell lines by the proteasome inhibitor bortezomib (PS-341, Velcade).

Synergistic induction of apoptosis occurred within 4 to 6 hours in cells treated with

TRAIL plus bortezomib and was associated with accumulation of p21 WAF-I/Cip-1 (p21) and

inhibition of cyclin-dependent kinase activity. Roscovitine, a specific cyclin-dependent

kinase 1/2 inhibitor, also sensitized cells to TRAIL. Silencing p21 expression reduced

levels of DNA fragmentation by 50% in cells treated with bortezomib and TRAIL,

confirming that p21 was required for the response. Analysis of the TRAIL pathway

revealed that caspase 8 processing was enhanced in a p21-dependent fashion in cells

exposed to TRAIL and bortezomib as compared to cells treated with TRAIL alone. As a

result, all downstream components of the pathway (Bid cleavage, cytochrome c release

and caspase 3 activation) were amplified. These data strongly suggest that p21-mediated

cdk inhibition promotes TRAIL sensitivity via caspase-8 activation and that TRAIL and

bortezomib should be combined in appropriate in vivo models as a possible approach to

solid tumor therapy.

(219 words)
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INTRODUCTION

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a

homotrimeric cytokine that induces cell death in a variety of different cancer cell types

but not in normal cells (1-3). TRAIL promotes apoptosis via binding to two surface

receptors (DR4, DR5) that contain homologous death domains (DD) within their

cytoplasmic tails, resulting in receptor trimerization and recruitment of the cytosolic

death domain (DD)-containing protein, Fas-associated death domain (FADD) (4-7). This

stimulated conformation of the TRAIL receptor, known as the death-inducing signaling

complex (DISC) (8), allows FADD to recruit and activate procaspase 8, which then

undergoes autocatalytic activation (9). Once fully activated, caspase 8 can either directly

cleave and activate downstream effector caspases (3, 7) or it can stimulate a

mitochondrial amplification loop by cleaving Bid, a BH3-only member of the Bcl-2

family (10-12). Studies in animal models indicate that systemic therapy with TRAIL is

safe, and Phase I clinical trials designed to evaluate TRAIL toxicity and anti-tumor

efficacy are being opened this year (13). However, in vitro data demonstrate that up to

50% of tumor cell lines do not undergo apoptosis in response to TRAIL. Thus,

understanding the molecular mechanisms underlying TRAIL resistance and identifying

strategies to reverse it are high priorities for ongoing research.

The 26S proteasome is a multicatalytic enzyme expressed in the nucleus and

cytoplasm of all eukaryotic cells that degrades proteins targeted by ubiquitin conjugation

(14). The proteasome is responsible for maintaining homeostasis by controlling

intracellular levels of cell cycle regulatory proteins (p21, p27, and p53), transcription

factors, and certain tumor suppressor genes/oncogenes, making it an attractive therapeutic
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target in cancer (15-17). Bortezomib is a peptide boronate inhibitor of the proteasome

that was developed as an anti-cancer agent several years ago and was the first such agent

approved by the FDA for the treatment of a human cancer (multiple myeloma) (18). It

selectively binds to and inhibits the chymotryptic-like activity of the proteasome at

nanomolar concentrations, and in National Cancer Institute's 60 cancer cell line screen,

bortezomib displayed a mean IC 50 of 7nM with a unique spectrum of anticancer activity

(19). Cellular responses depend on tumor type and range from cell cycle inhibition to

apoptosis, and in vivo studies have demonstrated that bortezomib inhibits the growth of a

variety of different solid tumors without significant toxicity (19-23).

Here we report that TRAIL-resistant human prostate and bladder cancer cell lines

can be rapidly sensitized to TRAIL-induced apoptosis by treating them with bortezomib.

The molecular mechanisms underlying the effects of bortezomib involve p21

accumulation and enhanced activation of caspases 8 and 3.

MATERIALS AND METHODS

Cell Culture and Reagents The LNCaP-derived cell line, LNCaP-Pro5 (24), was

generously provided by Dr. Curtis Pettaway, Department of Urology, MD Anderson

Cancer Center. The 253J B-V cells were derived from the 253J parental line by

orthotopic "recycling" through the mouse bladder as described previously (25). The UM-

UC3 cells were obtained from H. Barton Grossman, Department of Urology, U.T. M.D.

Anderson Cancer center. Human PC-3 and DU-145 prostate cancer cells were obtained

from American Type Culture Collection (ATCC, Rockville, MD). The prostate cancer

cells were grown in RPMI-1640 (Life Technologies, Inc.) supplemented with 10% fetal
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bovine serum (Life Technologies, Inc.) and 1% MEM vitamin solution (Life

Technologies, Inc.), sodium pyruvate (BioWhittaker), L-glutamine (BioWhittaker),

penicillin/streptomycin solution (BioWhittaker), and nonessential amino acids (Life

Technologies, Inc.) under an atmosphere of 5% CO2 in an incubator. The bladder cancer

cells were cultured in MEM medium containing the same supplements. Bortezomib was

kindly supplied by Millenium Pharmaceuticals (Cambridge, MA), and rhTRAIL was

purchased from R&D Systems, Inc., Minneapolis, MN).

Quantification of apoptosis by PI/FACS Cells were treated with lOng/mL of rhTRAIL

and/or lOOnM bortezomib for the times indicated. Both growth and wash media were

saved and cells were harvested with trypsin. Supernatants were removed and pellets were

resuspended in 400 [tL of propidium iodide (PI) solution (50[tg/mL propidium iodide,

0.1% Triton X-100, and 0.1% sodium citrate in PBS). Samples were then incubated

overnight at 4°C in the dark before analysis by flow cytometry. The cells with sub-

diploid DNA content were quantified to determine the percentage of cells containing

apoptotic, fragmented DNA (26).

Quantitative analysis of phosphatidylserine exposure. Cells were treated with

lOng/mL of rhTRAIL and/or 100nM bortezomib for the times indicated prior to harvest

with trypsin. Exposure of phosphatidylserine was measured by annexin V binding as

described previously (27) using a commercial kit (Annexin V-PE Apoptosis Detection

kit, BD Biosciences, San Diego, CA) according to manufacturer's protocol. Cell pellets

were washed twice with cold PBS and resuspended in lx binding buffer (10 mM
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Hepes/NaOH (pH 7.4), 140 mM NaC1, 2.5 mM CaCl2) at a concentration of 1 x 106

cells/mL. Aliquots of 100 ýtL were transferred to separate tubes and 5 [tL of Annexin V-

PE plus 5 ýtL of 7-AAD (7-Amino-actinomycin D) were added to each. After vortexing,

cells were incubated at room temperature for 15 minutes in the dark. Samples were

dilited with 400 [d of lx binding buffer, and surface annexin-V immunofluorescence was

quantified immediately by flow cytometry.

Immunoblot analyses. Cells were lysed by incubation for lh at 4°C in 100ýtL of Triton

lysis buffer [1% Triton X-100, 150mM NaCl, 25mM Tris (pH 7.5), 1mM glycerol

phosphate, lmM sodium orthovanadate, 1mM sodium fluoride, and 1 Complete Mini

Protease Inhibitor Cocktail tablet (Roche, Indianapolis, IN)]. Lysates were centrifuged

for 5 min at 12,000 x g (4'C), and 20 [tg of the postnuclear supernatants were mixed with

equal volumes of 2x SDS-PAGE sample buffer (50mM Tris-HC1, 2% SDS, 0.1%

bromophenol blue, 10% glycerol, and 5% 13-mercaptoethanol). Samples were then

boiled, for 5 minutes at 100'C and resolved by 15% SDS-PAGE at lOV for 90 min.

Polypeptides were transferred to nitrocellulose membranes for 90 min at lOOV in a

transfer buffer containing 39mM glycine, 48mM Tris, and 20% methanol. Membranes

were blocked for 1 hr in 5% milk diluted in Tris-buffered saline containing 0.1% Tween-

20 (TBS-T). Membranes were incubated overnight at 4°C with primary antibodies

specific for caspase 8 [(Cell Signaling Technology, Beverly, MA), 1:1000 dilution],

caspase 3, cytochrome-c, p21, or p27 [Pharmingen, San Diego, CA 1:1000 dilution], or

Bid [(R&D Biosystems, Minneapolis, MN), 1:1000 dilution]. Blots were washed 3 x 5

min in TBS-T before incubation with secondary antibodies [horseradish peroxidase-
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conjugared sheep antimouse or donkey anti-rabbit antibody (Amersham Biosciences,

Piscataway, NJ), 1:1000 dilution] for 2h at 4°C. Blots were washed 3X 10 min in TBS-T

and developed by enhanced chemiluminescence (Renaissance; New England Nuclear,

Boston, MA).

Caspase 3 Assay Cells were treated with 10OnM bortezomib and/or lOng/mL rhTRAIL

for the times indicated and harvested with trypsin. Growth and wash media were saved

and cell pellets were washed once with PBS. Supernatants were removed and pellets

were lysed with 200•tL cold lysis buffer (100 mM HEPES (pH 7.4), 1% sucrose, 0.1%

CHAPS, 1 mM EDTA, 100 mM DTT) containing a protease inhibitor cocktail

("Complete Mini" Protease Inhibitor Tablet, Boehringer, Indianapolis, IN). Cells were

lysed at 4°C for 1 hr and centrifuged, and 800[tL of caspase buffer plus 2ýtL of 20 mM

DEVD-AFC fluorogenic substrate (AFC 138, Enzyme Systems Products, Livermore,

CA) was added to each supernatant. Samples were incubated for lhr at 37°C in the dark

and diluted with 1 mL caspase buffer, and released AFC fluorescence was quantified

using a Shimadzu spectrofluorimeter (Model RF-1501).

Immune complex cdk2 kinase assays Cells were cultured to 60% confluency in 10 cm

dishes and treated with various concentrations of bortezomib or roscovitine for 24 hours.

Cells were then harvested with trypsin and lysed by rotating them for 1 h at 40C in 1 mL

of the Triton X-100 lysis buffer described above. Lysates were cleared by centrifugation

for 10 min at 12,000 x g (4°C). Supernatants containing 400 •tg of protein were then

incubated with an anti-cdk2 antibody for 2 hr followed by overnight incubation with 50
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[tL protein A/G-Sepharose beads (Santa Cruz Biotechnology, Santa Cruz, CA) at 4°C.

The beads were then washed twice with lysis buffer and twice more with kinase buffer

(25 mM Tris, pH 7.2, and 10 mM MgCI2). Immunoprecipitates were incubated with 1 jig

histone HI, 150 [tM ATP, and 20 1ACi [Y_3 2P] ATP in 50 RiL of kinase buffer for 15 min at

30'C. SDS sample buffer was used to terminate the reaction and the mixture was boiled

for 5 min at 100°C. Finally, the mixture was loaded onto 12% SDS-PAGE gels and

resolved at 1OOV for 90 min. The gels were stained with Coomassie blue, destained,

dried, and analyzed by autoradiography.

siRNA-mediated silencing of p21. Cells were grown to 60% confluency in 6-well plates

and transfected with specific or non-specific siRNA constructs for 48 hours according to

the manufacturer's protocols. The constructs utilized were the siRNA SMARTpool cdk-

N-lA (p21WAF-1/Cip-I) and cdk-N- lB (p27KipI'(Upstate Cell Signaling Solutions; Lake

Placid, NY) or the siRNA Nonspecific Control IV (DHARMACON RNA Technologies,

Lafayette, CO), all at 200 nM. Liposome-mediated transfection was accomplished with

Oligofectamine Reagent (Invitrogen Life Technologies; Carlsbad, CA) diluted 1:100 in

serum-free MEM. Following silencing cells were treated with rhTRAIL (10ng/mL) and

bortezomib (1OOnM) for 8 hours and DNA fragmentation was quantified by PI/FACS.

The efficiency of p21 or p27 silencing was verified in each experiment by

immunoblotting.
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RESULTS

Effects of bortezomib on TRAIL-induced apoptosis. Previous studies have

implicated the NFKB pathway in the regulation of TRAIL resistance (28, 29). In

preliminary experiments, we found that many human bladder and prostate cancer cell

lines are refractory to TRAIL-induced apoptosis at baseline. Hypothesizing that NFKB

activation maintains the resistant phenotype in these cell lines, we treated them

simultaneously with TRAIL plus bortezomib (a potent NFKB antagonist)(30) and

measured DNA fragmentation by PI/FACS analysis 24 hours later. The results revealed a

dramatic synergistic interaction between bortezomib and TRAIL in all of the cell lines

(Fig. IA). We confirmed these results using an independent measure of apoptosis

(Annexin-V staining) for detection of phosphatidylserine externalization (Fig. 1B). In

contrast, a more selective inhibitor of NFKB (the IKK antagonist PS- 1145) (31) had no

effect on TRAIL-induced apoptosis (Fig. 1C), strongly suggesting that NFKB inhibition

did not account for the effects of bortezomib on TRAIL sensitivity.

In subsequent experiments we characterized the effects of bortezomib on critical

components of the TRAIL cell death pathway. Kinetic analyses demonstrated that

TRAIL sensitization occurred as early as 4-6 hrs in the LNCaP Pro5 and 253JB-V cells

(60.0 ± 8.56, p<0.001 and 60.8 ± 10.5, p<0.001, respectively) (Fig 2A). Immunoblotting

studies demonstrated that bortezomib had no effect on proteolytic processing and

activation of caspase-8, whereas incubation with TRAIL resulted in partial proteolytic

processing of caspase-8 to form a 43/41kDa intermediate by 8 hours (Fig 2B). In cells

treated with bortezomib plus TRAIL, this intermediate formed with much more rapid
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kinetics (<30 min), and it was accompanied by the formation of a smaller fragment

(18kDa) characteristic of the active, large subunit of caspase-8 (Fig. 2B). Cells treated

with TRAIL plus bortezomib in the presence of a caspase-8-selective peptide antagonist,

IETDfmk (10 [tM), displayed no DNA fragmentation above controls (data not shown),

consistent with previous studies that demonstrated that caspase-8 is required for TRAIL-

induced cell death (32). Cells treated with TRAIL plus bortezomib also displayed

enhanced cleavage of Bid and release of cytochrome c (Fig. 2C). Finally, exposure to

either bortezomib or TRAIL alone had little effect on procaspase-3, whereas treatment

with the combination promoted rapid proteolytic processing of procaspase-3 and its

enzymatic activation (Fig 2D). Together, these data demonstrate that bortezomib

interacts with the TRAIL pathway at the level of caspase-8 to promote the initiation of

mitochondrial events (cytochrome c release) that dramatically amplify caspase-3

activation. These effects probably account for the synergistic induction of DNA

fragmentation and phosphatidylserine exposure observed in cells treated with the

combination.

Role of p21 in bortezomib-induced TRAIL sensitization. Although treatment

with bortezomib alone failed to induce significant increases in apoptosis in the tested cell

lines, previous work from our laboratory demonstrated that it blocks DNA synthesis at

low nanomolar concentrations in bladder cancer cells irrespective of whether or not it

induces cell death (33). The effects on DNA synthesis are associated with accumulation

of cyclin-dependent kinase inhibitors, p21 and p27, and inhibition of cdk2 and cdc2

activity (30, 33, 34). Furthermore, p21 accumulation is considered a marker for effective

inhibition of the proteasome (35). Consistent with the previous studies, bortezomib
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induced a time-dependent accumulation of p21 in all of the TRAIL-resistant cells

examined here (Fig. 3A and data not shown). Bortezomib also stimulated increases in

p27 expression with similar kinetics (Fig. 4B and data not shown). Immune complex

kinase assays confirmed that accumulation of p21 and p27 was associated with inhibition

of cdk2 activity (Fig. 2B).

To determine whether or not cdk inhibition was sufficient to promote TRAIL

sensitization, we examined the effects of the broad-spectrum cdk inhibitor, roscovitine,

on TRAIL-induced apoptosis. Roscovitine had no effect on apoptosis at the

concentration and time point studied in the 253J B-V cells but did induce DNA

fragmentation in LNCaP-Pro5 cells (Fig. 3C). Combined treatment with roscovitine plus

TRAIL resulted in synergistic induction of DNA fragmentation in both cell lines as

measured by PI/FACS (Fig. 2C). Similar results were obtained with another, structurally

unrelated cdk inhibitor (olomoucine) but not with an inactive structural analog of the

compound (iso-olomoucine)(data not shown). Together, these results suggest that

inhibition of cdk activation is sufficient to explain the effects of bortezomib on TRAIL

sensitization. However, cdk inhibitors (i.e., flavopiridol) can also interfere with

transcription (36, 37), and these off-target effects may contribute to the TRAIL

sensitization observed in cells treated with roscovitine or olomoucine as well.

To more directly assess the involvement of p21 and p27 in bortzomib-mediated

TRAIL sensitization, we compared the levels of DNA fragmentation observed in LNCaP-

Pro5 cells exposed to a control siRNA construct to those observed in LNCaP-Pro5 cells

exposed to siRNA specific for p21 or p27. Immunoblotting confirmed that silencing was

efficient in cells exposed to either of the specific constructs but not in the controls (Figs.
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4A,B). Levels of DNA fragmentation in the p21-silenced cells were significantly lower

than those observed in controls (32% versus 66%, or a 50% reduction, p < 0.001),

confirming that the bortezomib-induced accumulation of p21 contributed directly to

TRAIL sensitization. Levels in the p27-silenced cells also appeared to be consistently

lower than in controls (Fig. 4B), but the effects did not reach statistical significance, and

our attempts to simultaneously silence both p21 and p27 were unsuccessful. Silencing

p21 inhibited procaspase-8 activation as measured by immunoblotting (Fig. 4C) or using

a fluorigenic caspase-8 peptide substrate (data not shown), demonstrating that p21 acted

at the level of procaspase-8 to promote cell death. As a result, processing of procaspase-

3 was also reduced in cells depleted of p21 (Fig. 4C).
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DISCUSSION

Bortezomib and TRAIL are undergoing evaluation in clinical trials in a variety of

different malignancies. Here we report that they can be combined to induce synergistic

cell death in genitourinary cancer cells in vitro and in vivo. Characterization of the

molecular mechanisms involved link the effects of bortezomib to increased caspase-8

activation, indicating that the drug affects TRAIL sensitivity at one of the earliest steps in

the pathway. Cell death occurred with strikingly rapid kinetics (4-8 h) as compared to

responses to single or combined conventional chemotherapeutic agents, which in our

hands require 24-48 h in these cells. In fact, the kinetics of cell death observed here were

more rapid than any we have observed in a solid tumor model exposed to any agent,

including pharmacological agents (staurosporine, thapsigargin) that are considered the

most potent triggers of cell death.

The transcription factor NFKB has received considerable attention for its role in

cancer cell survival pathways (38). Bortezomib is a potent inhibitor of NFKB activation

via stabilization of NFKB's physiological inhibitor, IKBcQ, and its effects as an NFKB

inhibitor have been used to sensitize cancer cells to other death stimuli (38). Although

inhibition of NFKB was an attractive explanation for bortezomib's effects on TRAIL

sensitivity, we were unable to mimic them with a more specific inhibitor of the pathway

(the IKK inhibitor PS-1 145). Rather, TRAIL sensitization was associated with the

accumulation of p21 and inhibition of cdk2 activity, and it was reversed in cells

transfected with an siRNA construct specific for p21. Although it is possible that p21

promotes TRAIL sensitivity via a direct mechanism, the observation that chemical cdk

inhibitors like roscovitine (Fig. 3C) (39) and flavopiridol (40-42) can also synergistically



15

sensitize cells to TRAIL strongly suggests that p21 's effects are mediated by cdk

inhibition. Based on these results, we would predict that any stimulus that directly or

indirectly causes cdk inhibition would sensitize cancer cells to TRAIL-mediated cell

death. Support for this concept comes from the observation that tumor cells are most

sensitive to TRAIL in the G1 phase of the cell cycle (43), and DNA damaging agents

synergize with TRAIL to promote apoptosis in cells that retain wild-type p53 (44), where

p53-mediated p21 expression and cell cycle arrest should occur. Accumulation of p21

also underlies TRAIL sensitization induced by resveratrol (45) and probably contributes

to the synergistic increases in apoptosis observed in cells treated with TRAIL plus

histone deacetylase (HDAC) inhibitors (46, 47).

Although our data suggest that p21-mediated cdk inhibition is responsible for the

increased caspase-8 activation observed in cells treated with bortezomib plus TRAIL,

further study is required to elucidate the specific mechanisms involved. One issue is our

observation that enhanced caspase-8 processing was detected as early as 30 min after

treatment with TRAIL plus bortezomib, which was somewhat faster than the kinetics of

p21 accumulation measured by immunoblotting. This observation coupled with the

incomplete suppression of DNA fragmentation observed in the p21- or p27-silenced cells

suggest that additional bortezomib-sensitive mechanism(s) are involved. Studies in other

models concluded that bortezomib enhanced surface DR5 expression (48) and decreased

levels of c-FLIP (48, 49), both of which could contribute to the increased caspase-8

activation observed. We have confirmed that bortezomib and roscovitine increase

surface DR5 expression in the LNCaP-Pro5 and 253J B-V cells, but their effects are

delayed (>12 h) relative to the rapid kinetics of caspase activation and DNA
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fragmentation (4-8 h)(L. Lashinger, M. Shrader, unpublished observations). We also

investigated the effects of bortezomib on expression of c-FLIP and the TRAIL decoy

receptors (DcR- 1, and DcR-2) in our cells and did not detect any obvious changes that

might account for the phenomenon (L. Lashinger, unpublished observations). On the

other hand, the FADD adaptor protein is known to be phosphorylated in a cell cycle-

sensitive manner (50-52), and in preliminary studies we have found that combined

treatment with bortezomib plus TRAIL leads to changes in FADD phosphorylation that

are not observed in response to treatment with either agent alone (S. Williams,

unpublished observations). Therefore, in ongoing studies we are attempting to define the

potential biological significance of these changes in FADD phosphorylation in our cell

lines.

Accumulating evidence indicates that cell cycle progression and cell death are

mechanistically inter-related (53). Specifically, alterations that promote cell cycle

progression often sensitize cells to death, whereas processes that inhibit cell cycle

progression block cell death (53). Most of the investigational agents being studied at

present (i.e., growth factor receptor antagonists, kinase inhibitors, HDAC inhibitors,

bortezomib, etc) arrest cells in G1 (54), which may enable them to reinforce the growth

inhibitory/cytostatic effects of conventional chemotherapy but probably does not make

them particularly effective in promoting cell killing. Coupled with the other studies

described above, our data strongly suggest that cell cycle arrest at the G1/S checkpoint

promotes sensitivity to TRAIL-mediated apoptosis in cancer cells, which places it in a

unique category relative to other death-inducing stimuli. Thus, TRAIL -based

combination therapy appears to be qualitatively different from other combinations of
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biological and cytotoxic agents because it is most active in cells that have been growth

arrested. The data provide a compelling rationale for performing more extensive studies

to optimize the anti-tumor activities of these combinations in appropriate preclinical

models in preparation for clinical studies in patients. Our preliminary studies (L.

Lashinger, unpublished observations) indicate that biologically active doses of

bortezomib and recombinant human TRAIL can be delivered to nude mice without

generating systemic toxicity.
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FIGURE LEGENDS

Figure 1. Effects of bortezomib on TRAIL-induced apoptosis. A. Effects on DNA

fragmentation. Cells were incubated in the absence or presence of 10 ng/ml recombinant

human TRAIL with or without 100 nM bortezomib (BZ) for 24 h and DNA

fragmentation was quantified by PI/FACS as described in Materials and Methods. Mean

+ S.E.M., n = 3, *p < 0.01. B. Effects on phosphatidylserine exposure. Cells were

incubated for 24 h as described above, and externalization of PS was quantified by

immunofluorescence annexin-V staining and FACS analysis as described in Materials

and Methods. Mean ± S.E.M., n = 3, *p < 0.01. C. Effects of the IKK inhibitor, PS-

1145, on TRAIL-induced apoptosis. Cells were incubated for 24 h in the absence or

presence of 10 ng/ml recombinant human TRAIL with or without 50 [tM PS-1145 and

DNA fragmentation was measured by PI/FACS as described in Materials and Methods.

Mean ± S.E.M., n = 3.

Figure 2. Characterization of the effects of bortezomib on sentinel steps within the

TRAIL cell death pathway. A. Kinetics of DNA fragmentation. 253J B-V or LNCaP-

Pro5 cells were incubated in the absence or presence of 10 ng/ml TRAIL, 100 nM

bortezomib (BZ), or both for the times indicated and DNA fragmentation was measured

by PI/FACS as described in Materials and Methods. Mean ± S.E.M., n = 3. B. Effects

on procaspase-8 processing. 253J B-V or LNCaP-Pro5 cells were incubated with TRAIL

with or without bortezomib (BZ) for the times indicated and proteolytic processing

(activation) of procaspase-8 was analyzed by immunoblotting. Note that the appearance

of the completely processed, active p 18 caspase-8 fragment appears within 30 min in
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both cell lines. Results are representative of those obtained in 3 separate experiments. C.

Effects on cytochrome c release (top panels) and Bid cleavage (bottom panels). Cells

were incubated with 10 ng/ml TRAIL with or without 100 nM bortezomib for the times

indicated. Cytochrome c release was measured in cytosolic extracts and the

disappearance of the intact form of Bid was measured in total cell extracts by

immunoblotting as described in Materials and Methods. In the cytochrome c experiment,

the top panel displays the cytochrome c present in the cytosolic fraction, and the bottom

panel displays the cytochrome c present in the membrane fraction. Note that the TRAIL

plus bortezomib combination induces cytochrome c release by 4 h in both cell types.

Results are representative of those obtained in 3 separate experiments. D. Effects on

caspase-3 activation. 253J B-V or LNCaP-Pro5 cells were incubated with 10 ng/ml

TRAIL in the absence or presence of 100 nM bortezomib for the times indicated.

Caspase-3 proteolytic activity was quantified in cytosolic extracts using a DEVD-AFC

fluorigenic peptide as described in Materials and Methods (top panel). Mean ± S.D.,

Proteolytic processing of procaspase-3 was also measured in total cell extracts by

immunoblotting. Percentages of hypodiploid cells were measured in parallel and are

indicated below each immunoblot. Note the appearance of active p20/p 17 fragments by 4

h in cells treated with TRAIL plus bortezomib. Results are representative of those

obtained in 3 separate experiments.

Figure 3. Effects of bortezomib on cdk activity. A. Effects of bortezomib on p21

accumulation in LNCaP-Pro5 cells. Cells were incubated in the absence or presence of

100 nM bortezomib, 10 ng/ml TRAIL, or both, and p21 expression was measured in total
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cell extracts by immunoblotting (upper panel). Expression of actin was measured in

parallel as a loading control. Results are representative of those obtained in 3 separate

experiments. B. Effects of bortezomib and roscovitine on cdk2 activity. LNCaP-Pro5

cells were incubated for 16 h in the presence of the indicated concentrations of either

agent and cdk2 kinase activity was measured in immunoprecipitates as described in

Materials and Methods. Expression of cdk2 protein was quantified in parallel by

immunoblotting and served as a loading control. Relative kinase activities were

quantified in each condition by densitometry and standardized to control values

(indicated below the immunoblot). Results are representative of those obtained in 3

separate experiments. C. Effects of roscovitine on TRAIL-induced DNA fragmentation.

Cells were incubated with 10 ng/ml TRAIL with or without 25 [LM roscovitine for 16 h

and DNA fragmentation was quantified by PI/FACS. Mean ± S.E.M., n = 3.

Figure 4. Accumulation of p21 is required for bortezomib-mediated TRAIL

sensitization. A. Effects of p21 silencing on DNA fragmentation. Cells were transiently

transfected with an siRNA construct specific for p21 or a non-specific control construct

for 48 h. Cells were then incubated for 8 h with 100 nM bortezomib, 10 ng/ml TRAIL,

or both agents, and DNA fragmentation was measured by PI/FACS. Mean ± S.E.M., n =

3, *p < 0.01. In the bottom panel, the effects of p21 silencing on protein expression were

measured by immunoblotting. Results are representative of those obtained in 3 separate

experiments. B. Effects of p27 silencing on DNA fragmentation. Cells were transiently

transfected with an siRNA construct specific for p27 or a non-specific control construct

for 48 h. Cells were then incubated for 8 h with 100 nM bortezomib, 10 ng/ml TRAIL,
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or both agents, and DNA fragmentation was measured by PI/FACS. Mean ± S.E.M., n =

3. In the bottom panel, the effects of p27 silencing on protein expression were measured

by immunoblotting. Results are representative of those obtained in 3 separate

experiments. C. Effects of p21 silencing on procaspase-8 and -3 activation. Cells were

transfected with the p21-specific siRNA construct or a control construct for 48 h. Cells

were then incubated for 8 h with 100 nM bortezomib, 10 ng/ml TRAIL, or both agents

for 8 h, and procaspase-8 and -3 were visualized by immunoblotting. Actin served as a

control for protein loading. Arrows indicate mature large subunits of caspase-8 and -3.

Note that these mature forms are absent in the p21-silenced cells.
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